数据结构与算法之美

为工程师量身打造的数据结构与算法私教课


27 | 递归树:如何借助树来求解递归算法的时间复杂度?

<p><img src="https://static001.geekbang.org/resource/image/2f/6d/2fde598f081f84187695fbf1937c446d.jpg" alt="" /></p> <p>今天,我们来讲树这种数据结构的一种特殊应用,递归树。</p> <p>我们都知道,递归代码的时间复杂度分析起来很麻烦。我们在<a href="https://time.geekbang.org/column/article/41913">第 12 节《排序(下)》</a>那里讲过,如何利用递推公式,求解归并排序、快速排序的时间复杂度,但是,有些情况,比如快排的平均时间复杂度的分析,用递推公式的话,会涉及非常复杂的数学推导。</p> <p>除了用递推公式这种比较复杂的分析方法,有没有更简单的方法呢?今天,我们就来学习另外一种方法,<strong>借助递归树来分析递归算法的时间复杂度</strong>。</p> <h2>递归树与时间复杂度分析</h2> <p>我们前面讲过,递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。</p> <p>如果我们把这个一层一层的分解过程画成图,它其实就是一棵树。我们给这棵树起一个名字,叫作<strong>递归树</strong>。我这里画了一棵斐波那契数列的递归树,你可以看看。节点里的数字表示数据的规模,一个节点的求解可以分解为左右子节点两个问题的求解。</p> <p><img src="https://static001.geekbang.org/resource/image/1d/a3/1d9648b7f43e430473d76d24803159a3.jpg" alt="" /></p> <p>通过这个例子,你对递归树的样子应该有个感性的认识了,看起来并不复杂。现在,我们就来看,<strong>如何用递归树来求解时间复杂度</strong>。</p> <p>归并排序算法你还记得吧?它的递归实现代码非常简洁。现在我们就借助归并排序来看看,如何用递归树,来分析递归代码的时间复杂度。</p> <!-- [[[read_end]]] --> <p>归并排序的原理我就不详细介绍了,如果你忘记了,可以回看一下第 12 节的内容。归并排序每次会将数据规模一分为二。我们把归并排序画成递归树,就是下面这个样子:</p> <p><img src="https://static001.geekbang.org/resource/image/c6/d0/c66bfc3d02d3b7b8f64c208bf4c948d0.jpg" alt="" /></p> <p>因为每次分解都是一分为二,所以代价很低,我们把时间上的消耗记作常量 1&lt;。归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中我们可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。我们把每一层归并操作消耗的时间记作 n。</p> <p>现在,我们只需要知道这棵树的高度 h,用高度h 乘以每一层的时间消耗 n,就可以得到总的时间复杂度 O(n * h)。</p> <p>从归并排序的原理和递归树,可以看出来,归并排序递归树是一棵满二叉树。我们前两节中讲到,满二叉树的高度大约是 log<sub>2</sub>n,所以,归并排序递归实现的时间复杂度就是 O(n log n)。我这里的时间复杂度都是估算的,对树的高度的计算也没有那么精确,但是这并不影响复杂度的计算结果。</p> <p>利用递归树的时间复杂度分析方法并不难理解,关键还是在实战,所以,接下来我会通过三个实际的递归算法,带你实战一下递归的复杂度分析。学完这节课之后,你应该能真正掌握递归代码的复杂度分析。</p> <h2>实战一:分析快速排序的时间复杂度</h2> <p>在用递归树推导之前,我们先来回忆一下用递推公式的分析方法。你可以回想一下,当时,我们为什么说用递推公式来求解平均时间复杂度非常复杂?</p> <p>快速排序在最好情况下,每次分区都能一分为二,这个时候用递推公式 T(n)=2T(n/2)+n,很容易就能推导出时间复杂度是 O(n log n)。但是,我们并不可能每次分区都这么幸运,正好一分为二。</p> <p>我们假设平均情况下,每次分区之后,两个分区的大小比例为 1:k。当 k=9 时,如果用递推公式的方法来求解时间复杂度的话,递推公式就写成 T(n)=T(n/10)+T(9n/10)+n。</p> <p>这个公式可以推导出时间复杂度,但是推导过程非常复杂。那我们来看看,<strong>用递归树来分析快速排序的平均情况时间复杂度,是不是比较简单呢?</strong></p> <p>我们还是取 k 等于 9,也就是说,每次分区都很不平均,一个分区是另一个分区的 9 倍。如果我们把递归分解的过程画成递归树,就是下面这个样子:</p> <p><img src="https://static001.geekbang.org/resource/image/44/43/44972a3531dae0b7a0ccc935bc13f243.jpg" alt="" /></p> <p>快速排序的过程中,每次分区都要遍历待分区区间的所有数据,所以,每一层分区操作所遍历的数据的个数之和就是 n。我们现在只要求出递归树的高度 h,这个快排过程遍历的数据个数就是 h * n ,也就是说,时间复杂度就是 O(h * n)。</p> <p>因为每次分区并不是均匀地一分为二,所以递归树并不是满二叉树。这样一个递归树的高度是多少呢?</p> <p>我们知道,快速排序结束的条件就是待排序的小区间,大小为 1,也就是说叶子节点里的数据规模是 1。从根节点 n 到叶子节点 1,递归树中最短的一个路径每次都乘以 1/10,最长的一个路径每次都乘以 9/10。通过计算,我们可以得到,从根节点到叶子节点的最短路径是 log<sub>10</sub>n,最长的路径是 log<sub>10/9</sub>n。</p> <p><img src="https://static001.geekbang.org/resource/image/7c/ed/7cea8607f0d92a901f3152341830d6ed.jpg" alt="" /></p> <p>所以,遍历数据的个数总和就介于 nlog<sub>10</sub>n 和 nlog<sub>10/9</sub>n 之间。根据复杂度的大 O 表示法,对数复杂度的底数不管是多少,我们统一写成 log n,所以,当分区大小比例是 1:9 时,快速排序的时间复杂度仍然是 O(n log n)。</p> <p>刚刚我们假设 k=9,那如果 k=99,也就是说,每次分区极其不平均,两个区间大小是 1:99,这个时候的时间复杂度是多少呢?</p> <p>我们可以类比上面 k=9 的分析过程。当 k=99 的时候,树的最短路径就是log<sub>100</sub>n,最长路径是 log<sub>100}/99</sub>n,所以总遍历数据个数介于 n log<sub>100</sub>n 和 n log<sub>100/99</sub>n 之间。尽管底数变了,但是时间复杂度也仍然是 O(n log n)。</p> <p>也就是说,对于k 等于 99,甚至是 9999……,只要 k 的值不随 n 变化,是一个事先确定的常量,那快排的时间复杂度就是 O(n log n)。所以,从概率论的角度来说,快排的平均时间复杂度就是 O(n log n)。</p> <h2>实战二:分析斐波那契数列的时间复杂度</h2> <p>在递归那一节中,我们举了一个跨台阶的例子,你还记得吗?那个例子实际上就是一个斐波那契数列。为了方便你回忆,我把它的代码实现贴在这里。</p> <pre><code>int f(int n) { if (n == 1) return 1; if (n == 2) return 2; return f(n-1) + f(n-2); }</code></pre> <p>这样一段代码的时间复杂度是多少呢?你可以先试着分析一下,然后再来看,我是怎么利用递归树来分析的。</p> <p>我们先把上面的递归代码画成递归树,就是下面这个样子:</p> <p><img src="https://static001.geekbang.org/resource/image/9c/ce/9ccbce1a70c7e2def52701dcf176a4ce.jpg" alt="" /></p> <p>这棵递归树的高度是多少呢?</p> <p>f(n) 分解为 f(n-1) 和 f(n-2),每次数据规模都是 -1 或者 -2,叶子节点的数据规模是 1 或者 2。所以,从根节点走到叶子节点,每条路径是长短不一的。如果每次都是 -1,那最长路径大约就是 n;如果每次都是 -2,那最短路径大约就是 n/2。</p> <p>每次分解之后的合并操作只需要一次加法运算,我们把这次加法运算的时间消耗记作 1。所以,从上往下,第一层的总时间消耗是 1,第二层的总时间消耗是 2,第三层的总时间消耗就是 2<sup>2</sup>。依次类推,第 k 层的时间消耗就是 2<sup>k-1</sup>,那整个算法的总的时间消耗就是每一层时间消耗之和。</p> <p>如果路径长度都为 n,那这个总和就是 2<sup>n</sup>-1。</p> <p><img src="https://static001.geekbang.org/resource/image/86/1f/86d301fc5fa3088383fa5b45f01e4d1f.jpg" alt="" /></p> <p>如果路径长度都是 n/2 ,那整个算法的总的时间消耗就是 2<sup>n/2</sup>-1。</p> <p><img src="https://static001.geekbang.org/resource/image/55/d4/55fcb1570dfa09e457cdb93ba58777d4.jpg" alt="" /></p> <p>所以,这个算法的时间复杂度就介于 O(2<sup>n</sup>) 和 O(2<sup>n/2</sup>) 之间。虽然这样得到的结果还不够精确,只是一个范围,但是我们也基本上知道了上面算法的时间复杂度是指数级的,非常高。</p> <h2>实战三:分析全排列的时间复杂度</h2> <p>前面两个复杂度分析都比较简单,我们再来看个稍微复杂的。</p> <p>我们在高中的时候都学过排列组合。“如何把 n 个数据的所有排列都找出来”,这就是全排列的问题。</p> <p>我来举个例子。比如,1, 2,3 这样 3 个数据,有下面这几种不同的排列:</p> <pre><code>1, 2, 3 1, 3, 2 2, 1, 3 2, 3, 1 3, 1, 2 3, 2, 1</code></pre> <p>如何编程打印一组数据的所有排列呢?这里就可以用递归来实现。</p> <p>如果我们确定了最后一位数据,那就变成了求解剩下 n-1 个数据的排列问题。而最后一位数据可以是 n 个数据中的任意一个,因此它的取值就有 n 种情况。所以,“n 个数据的排列”问题,就可以分解成 n-1 个数据的排列”的子问题。</p> <p>如果我们把它写成递推公式,就是下面这个样子:</p> <pre><code>假设数组中存储的是 1,2, 3...n。 f(1,2,...n) = {最后一位是 1, f(n-1)} + {最后一位是 2, f(n-1)} +...+{最后一位是 n, f(n-1)}。</code></pre> <p>如果我们把递推公式改写成代码,就是下面这个样子:</p> <pre><code>// 调用方式: // int[]a = a={1, 2, 3, 4}; printPermutations(a, 4, 4); // k 表示要处理的子数组的数据个数 public void printPermutations(int[] data, int n, int k) { if (k == 1) { for (int i = 0; i &lt; n; ++i) { System.out.print(data[i] + " "); } System.out.println(); } for (int i = 0; i &lt; k; ++i) { int tmp = data[i]; data[i] = data[k-1]; data[k-1] = tmp; printPermutations(data, n, k - 1); tmp = data[i]; data[i] = data[k-1]; data[k-1] = tmp; } }</code></pre> <p>如果不用我前面讲的递归树分析方法,这个递归代码的时间复杂度会比较难分析。现在,我们来看下,如何借助递归树,轻松分析出这个代码的时间复杂度。</p> <p>首先,我们还是画出递归树。不过,现在的递归树已经不是标准的二叉树了。</p> <p><img src="https://static001.geekbang.org/resource/image/82/9b/82f40bed489cf29b14192b44decf059b.jpg" alt="" /></p> <p>第一层分解有 n 次交换操作,第二层有 n 个节点,每个节点分解需要 n-1 次交换,所以第二层总的交换次数是 n*(n-1)。第三层有 n*(n-1)个节点,每个节点分解需要 n-2 次交换,所以第三层总的交换次数是 n*(n-1)*(n-2)。</p> <p>以此类推,第 k 层总的交换次数就是 n * (n-1) * (n-2) * … * (n-k+1)。最后一层的交换次数就是 n * (n-1) * (n-2) * … * 2 * 1。每一层的交换次数之和就是总的交换次数。</p> <pre><code>n + n*(n-1) + n*(n-1)*(n-2) +... + n*(n-1)*(n-2)*...*2*1</code></pre> <p>这个公式的求和比较复杂,我们看最后一个数,n * (n-1) * (n-2) * … * 2 * 1 等于 n!,而前面的 n-1 个数都小于最后一个数,所以,总和肯定小于 n * n!,也就是说,全排列的递归算法的时间复杂度大于 O(n!),小于 O(n * n!),虽然我们没法知道非常精确的时间复杂度,但是这样一个范围已经让我们知道,全排列的时间复杂度是非常高的。</p> <p>这里我稍微说下,掌握分析的方法很重要,思路是重点,不要纠结于精确的时间复杂度到底是多少。</p> <h2>内容小结</h2> <p>今天,我们用递归树分析了递归代码的时间复杂度。加上我们在排序那一节讲到的递推公式的时间复杂度分析方法,我们现在已经学习了两种递归代码的时间复杂度分析方法了。</p> <p>有些代码比较适合用递推公式来分析,比如归并排序的时间复杂度、快速排序的最好情况时间复杂度;有些比较适合采用递归树来分析,比如快速排序的平均时间复杂度。而有些可能两个都不怎么适合使用,比如二叉树的递归前中后序遍历。</p> <p>时间复杂度分析的理论知识并不多,也不复杂,掌握起来也不难,但是,在我们平时的工作、学习中,面对的代码千差万别,能够灵活应用学到的复杂度分析方法,来分析现有的代码,并不是件简单的事情,所以,你平时要多实战、多分析,只有这样,面对任何代码的时间复杂度分析,你才能做到游刃有余、毫不畏惧。</p> <h2>课后思考</h2> <p>1 个细胞的生命周期是 3 小时,1 小时分裂一次。求 n 小时后,容器内有多少细胞?请你用已经学过的递归时间复杂度的分析方法,分析一下这个递归问题的时间复杂度。</p>

页面列表

ITEM_HTML